
184
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

PAPER

Efficient and Secure File Deduplication in Cloud Storage

Youngjoo SHIN†,††a) and Kwangjo KIM†b), Members

SUMMARY Outsourcing to a cloud storage brings forth new chal-
lenges for the efficient utilization of computing resources as well as simul-
taneously maintaining privacy and security for the outsourced data. Data
deduplication refers to a technique that eliminates redundant data on the
storage and the network, and is considered to be one of the most-promising
technologies that offers efficient resource utilization in the cloud comput-
ing. In terms of data security, however, deduplication obstructs applying
encryption on the outsourced data and even causes a side channel through
which information can be leaked. Achieving both efficient resource uti-
lization and data security still remains open. This paper addresses this
challenging issue and proposes a novel solution that enables data dedu-
plication while also providing the required data security and privacy. We
achieve this goal by constructing and utilizing equality predicate encryp-
tion schemes which allow to know only equivalence relations between en-
crypted data. We also utilize a hybrid approach for data deduplication to
prevent information leakage due to the side channel. The performance and
security analyses indicate that the proposed scheme is efficient to securely
manage the outsourced data in the cloud computing.
key words: cloud computing security, data deduplication, predicate en-
cryption, online guessing attack

1. Introduction

Cloud computing is a promising technology that econom-
ically enables data outsourcing as a service using Internet
technologies with elastic provisioning and usage-based pric-
ing [1]. As demand for data outsourcing increases, pay-as-
you-use cloud paradigm drives the need for cost-efficient
storage, specifically for reducing storage space and network
bandwidth overhead, which is directly related to the finan-
cial cost savings. Furthermore, the need for data security
and privacy also arises as more and more sensitive data
are being outsourced to cloud, such as emails and personal
health records, etc. For the fast growth of the cloud com-
puting, both problems of cost efficiency and data security
should be addressed well and resolved simultaneously.

In order to achieve cost savings, commercial service
providers utilize their resources efficiently through cross-
user data deduplication [2], which refers to a technique that
eliminates copies of a redundant file (or data chunk) across
users and provides links to the file instead of storing the
copies. There are two approaches of deduplication based on
its architecture. In the server-side (i.e., target-based) dedu-

Manuscript received November 19, 2012.
Manuscript revised October 22, 2013.
†The authors are with the Department of Computer Science,

KAIST, Korea.
††The author is with the Attached Institute of ETRI, Korea.
a) E-mail: s.youngjoo@kaist.ac.kr
b) E-mail: kkj@kaist.ac.kr

DOI: 10.1587/transinf.E97.D.184

plication, the cloud storage server mainly handles dedupli-
cation. On the other hand, client-side (i.e., source-based)
deduplication occurs at the client before a file is transferred
to the server. Client-side deduplication improves not only
storage space but also network bandwidth utilization. As
noted in [3], this technique achieves disk and bandwidth sav-
ings of more than 90%, and thus most commercial storage
service providers including DropBox, Mozy and Memopal
take advantage of client-side deduplication.

Data security is another challenging issue in cloud
computing, which originates from the fact that cloud servers
are usually outside of the trust domain of the data own-
ers. For recent years, the security research community
has mainly addressed privacy or security on the outsourced
cloud data, specifically focusing on access control [4]–[8]
and searchability over the encrypted data [9]–[13]. These
proposed solutions are usually attained through a sort of
encryption techniques. Most commercial storage service
providers, however, are reluctant to apply encryption on the
stored data, because encrypting on data impedes executing
data deduplication [3], [14]. Storage service providers may
be unlikely to stop using deduplication due to the high cost
savings offered by the technique.

Several approaches [15]–[18] proposed some ideas to
enable data deduplication over the encrypted data. Their
solutions are commonly based on so-called convergent en-
cryption, which takes a hashed value of a file as an encryp-
tion key. Using this technique, identical ciphertexts are al-
ways generated from identical plaintexts in a deterministic
manner. Hence, the cloud server can perform deduplica-
tion over encrypted data, without knowing the exact content
of the file. From the view of cryptography, however, it is
understood that deterministic encryption, including conver-
gent encryption naturally, is not as secure as randomized
one [19].

Keeping confidentiality of the outsourced data from the
untrusted cloud server is not the only security problem for
the system utilizing data deduplication. It has been shown
that most of storage services using client-side deduplication
commonly incur a side channel through which an adversary
may learn information about the contents of files of other
users [3]. This is because these services share two inherent
properties; 1) data transmission in a network can be visi-
ble to an adversary, and 2) deterministic and small-size data,
such as a hashed value of a file, is queried to the cloud server
before file uploading. A user who has not access to but curi-
ous about some file might mount an online guessing attack

Copyright c© 2014 The Institute of Electronics, Information and Communication Engineers

SHIN and KIM: EFFICIENT AND SECURE FILE DEDUPLICATION IN CLOUD STORAGE
185

Fig. 1 Online Guessing Attack Scenario: for each possible versions of
target file unauthorized user continues querying its hashed value until re-
ceiving ‘FileExists’ message from the cloud server.

exploiting the side channel. The attack is as follows: an ad-
versary first constructs a search domain comprising possible
versions of the target file, and then queries a hash of each
version to the server until a deduplication event occurs. (See
Fig. 1) This attack is very relevant for a corporate environ-
ment where the file content usually has low-entropy. That is,
most of files are small variations of standard templates and
the number of possible versions of the target file is moderate.
It is challenging but certainly necessary to prevent such an
information leakage in the client-side deduplication system.

To sum up, the two issues of efficient resource uti-
lization and data security in the cloud computing have not
been considered together and well addressed yet in either
of academia or industries. It actually still remains open to
achieve data security against the untrusted server as well as
unauthorized users capable of online guessing attack, while
enabling data deduplication.

In this paper, we address this issue and propose a novel
solution for cloud storage that raises efficiency up to a level
of practicality while also achieving strong security. Con-
cretely, we propose a data deduplication scheme which is
secure against the untrusted server as well as unauthorized
users. Our proposed scheme utilizes primarily a novel cryp-
tographic primitive, namely equality predicate encryption,
which allows cloud server to know only equivalence rela-
tions among ciphertexts without leaking any other informa-
tion of their plaintexts. Thus data privacy can be kept from
the cloud server while data deduplication is still enabled
over the encrypted files. In addition, the proposed scheme
allows the cloud server to perform data deduplication in a
hybrid manner. That is, deduplication will occurs either of
at server side or at client side with some probability. This
strategy greatly reduces the risk of information leakage by
increasing attack overhead of online-guessing adversaries.
In order to achieve our design goals, we constructed two
equality predicate encryption schemes in the symmetric-key
setting suitable for our application. The proposed scheme
is built upon these constructions, and the required data se-
curity is strongly enforced through the underlying provable
security of the constructions.

Main contributions of this paper can be summarized as
follows: 1) This paper is the first one that simultaneously
resolved two issues of the data security and the efficient re-
source utilization in the cloud computing; 2) The proposed
scheme also gives data owners a guarantee that adding their
data to the cloud storage has a very limited effect on what an
adversary exploiting side channel may learn about the data;

3) The proposed scheme as well as our constructed equal-
ity predicate encryptions are proved to be secure under the
standard cryptographic assumption.

The rest of this paper is organized as follows: Section 2
presents the system models and an overview of our solution.
Section 3 describes our constructions of equality predicate
encryption scheme. In Sect. 4, we describe the proposed se-
cure data deduplication scheme based on the constructions
of the encryption scheme in detail. In Sect. 5, we analyze
the security and discuss the performance of the proposed
scheme. We describe related works in Sect. 6. Finally, we
conclude our work in Sect. 7.

2. Models and Solution Overview

2.1 System and Attack Model

We assume that the system consists of the three entities:
Data owners, users and a cloud server. A data owner wishes
to outsource data (or file) in the external storage server and
is in charge of encrypting the data before outsourcing it. In
order to access the outsourced data, a user should be au-
thorized by the data owner. An authorized user possess the
secret key of the data file and can read the data by decrypt-
ing it. The cloud server, which stores outsourced data from
data owners, has abundant but limited storage and network
capacity. The cloud server is operated by the cloud service
provider who is interested in cost savings by improving disk
space and network utilization.

Similar to the previous approaches, we just assume the
cloud server to be honest-but-curious. That is, the cloud
server will honestly execute the assigned tasks in the system
but may try to learn some information of stored data as much
as possible. Unauthorized users would try to access stored
data which is not authorized to them. To achieve this goal,
they may perform an online guessing attack using the side
channel incurred by a client-side duplication as an oracle.
In addition, users and other data owners may also collude to
compute secret information that is necessary to access data
with any information that colluders have. Both of the cloud
server and any unauthorized users mounting these attacks
should be prevented from getting any information of unau-
thorized data on the storage.

We also consider malicious data owners who mount
some kind of attacks targeting a cloud server or other data
owners. In uploading a file, they would try to disturb dedu-
plication or corrupt data owned by others by doing dishon-
est behaviors such as computing with a manipulated secret
key and uploading a fake file. Reliability of the proposed
scheme against such attacks should be retained as well.

2.2 Solution Overview

Our goal is to help the cloud server enjoy the cost savings
offered by data deduplication, while also giving data own-
ers a guarantee that their data is kept confidential against the

186
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

untrusted cloud server and the unauthorized users. Specif-
ically, our motivation is to design an efficient and se-
cure cross-user data deduplication scheme for cloud stor-
age services. For this, we have primarily constructed,
based on PEKS (Public-key Encryption with Keyword
Search) [9], two equality predicate encryptions schemes in
the symmetric-key setting: 1) SEPE (Symmetric-key Equal-
ity Predicate Encryption) which is a basic equality predi-
cate encryption scheme and 2) SEPEn which is an extended
scheme of SEPE that has one-to-n tokens mapping (n ≥ 1).
That is, SEPEn allows n possible tokens to be matched the
corresponding encrypted file. Our constructions allow the
cloud server in possession of a token associated with each
file to know the equivalence relations between the encrypted
files without knowledge of the file content.

In the proposed scheme, a data owner generates ci-
phertexts of a file and the corresponding tokens using both
of SEPE and SEPEn before uploading the file to the cloud
server. Then the cloud server retrieves an identical file in
the storage by comparing these tokens with stored cipher-
texts. If an identical file has existed in the storage, us-
ing SEPE, the cloud server will always perform server-side
deduplication even without knowing the file content. On
the other hand, SEPEn will enables client-side deduplica-
tion with some probability less than 1. This is because just
one out of n possible tokens will be correctly verified with
the stored file. Hence, using SEPEn gives online guessing
adversaries substantial search complexity so that no adver-
sary with probabilistic and polynomially bounded computa-
tional resources can recover the information. With help of
SEPE and SEPEn, the proposed scheme provides data secu-
rity while also enabling deduplication either of at server-side
or at client-side in a hybrid manner. Some network transmis-
sion overhead may be introduced due to the randomized oc-
currence of client-side deduplication, but the overhead can
be minimized while ensuring the required security as we
will discuss later.

3. Symmetric-Key Equality Predicate Encryption

In this section, we formally define symmetric-key equality
predicate encryption and its security requirement. Then, we
construct two encryption schemes, SEPE and SEPEn, which
fulfill the definition and security requirement. The security
of the constructed schemes is also proved under the crypto-
graphic complexity assumptions rigorously.

3.1 Definitions

3.1.1 Symmetric-Key Equality Predicate Encryption

We first describe the concept of predicate encryption before
giving the definition of symmetric-key equality predicate
encryption. By definitions in [20] and [21], predicate en-
cryption is a kind of functional encryption system in which
a token associated with a function allows a user to evaluate
the function over the encrypted data. In predicate encryption

scheme, an encryption of a plaintext M can be evaluated us-
ing a token associated with a predicate to learn whether M
satisfies the predicate. Symmetric-key equality predicate en-
cryption is a predicate encryption scheme in the symmetric-
key setting that allows to evaluate an equality predicate over
a ciphertext of M given a token of another plaintext M′ to
learn whether M and M′ are equal. Symmetric-key setting
means that both of encryption and token generation are com-
puted with the same secret key. Note that PEKS [9] is an
equality predicate encryption scheme in the public-key set-
ting.

Definition 1. A symmetric-key equality predicate encryp-
tion scheme consists of the following probabilistic and poly-
nomial time algorithms:
Initialize(1λ): Take as input a security parameter 1λ and
output a global parameter Param. For brevity, the global
parameter Param output by Initialize algorithm is omitted
below.
KeyGen(aux): Output a secret key S K. An auxiliary input
aux may be used in generating the secret key.
Encrypt(S K,M): Take as input a secret key S K and a plain-
text M and output a ciphertext CT .
GenToken(S K,M): Take as input a secret key S K and a
plaintext M and output a token T K.
Test(T K,CT): Take as input T K=GenToken(S K,M′) and
CT=Encrypt(S K,M), and output ‘Yes’ if M = M′ and ‘No’
otherwise.

3.1.2 Security Definition

The required security of symmetric-key equality predicate
encryption scheme is an adaptive chosen plaintext security.
We define the security against an active adversary who can
access an encryption oracle and also obtain tokens T K for
any plaintext M of his choice. Even under such an attack,
the adversary is not allowed to distinguish an encryption of
a plaintext M0 from an encryption of a plaintext M1. Now
we define the security game between a challenger and the
adversaryA, as below:

Setup: Challenger runs the Initialize algorithm to generate a
global parameter Param and the KeyGen algorithm to gen-
erate a secret key S K. It gives the global parameter to the
adversary and keeps S K to itself.
Phase 1: The adversary can adaptively ask the challenger
for ciphertext CT or token T K for any plaintext M ∈ {0, 1}∗
of his choice.
Challenge: Once A decides that Phase 1 is over, A sends
two challenging plaintexts M0, M1 to the challenger. The
restriction is thatA did not previously ask for the ciphertexts
or the tokens of M0 and M1. The challenger picks a random
b ∈ {0, 1} and givesA a CT of Mb.
Phase 2: A continues to ask for ciphertexts CT or tokens
T K for any plaintext M of his choice except M0, M1.
Guess: Finally, A outputs b′ ∈ {0, 1} and wins the game if
b = b′.

SHIN and KIM: EFFICIENT AND SECURE FILE DEDUPLICATION IN CLOUD STORAGE
187

We define the adversaryA’s advantage in breaking the
symmetric-key equality predicate encryption scheme as

AdvA =
∣∣∣∣∣Pr{b = b′} − 1

2

∣∣∣∣∣ .
Definition 2. A symmetric-key equality predicate encryp-
tion scheme is semantically secure against an adaptive cho-
sen plaintext attack if for any probabilistic and polynomial
time (PPT) adversaryA, the advantage ofA in winning the
game is negligible in λ.

3.2 Cryptographic Background

In this section, we briefly review the bilinear maps and its
complexity assumption on which our constructions are built.

3.2.1 Bilinear Maps

Our constructions are based on some facts about groups with
efficiently computable bilinear maps. Let G and GT be two
multiplicative cyclic groups of prime order p. Let g be a
generator of G. A bilinear map is an injective function e :
G × G→ GT with following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Z∗p, we have
e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) � 1.
3. Computability: There is an efficient algorithm to com-

pute e(u, v) for ∀u, v ∈ G.

3.2.2 Bilinear Diffie-Hellman (BDH) Assumption

Let a, b, c ∈ Z∗p be chosen at random and g be a generator
of G. The Bilinear Diffie-Hellman problem is to compute
e(g, g)abc ∈ GT given g, ga, gb, gc ∈ G as input. The BDH
assumption [22], [23] states that no PPT algorithm can solve
the BDH problem with non-negligible advantage.

3.3 Our Constructions

We give two constructions for symmetric-key equality pred-
icate encryption scheme based on Bilinear Diffie-Hellman
assumption in the random oracle model: (1) SEPE which is
a basic construction of symmetric-key equality predicate en-
cryption scheme and (2) SEPEn which has one-to-n tokens
mapping so that n multiple tokens are possible to the corre-
sponding ciphertext. We will need the following hash func-
tions H0 : {0, 1}∗ → Z∗p, H1 : {0, 1}∗ → G, Hi

2 : {0, 1}∗ → Z∗p,
where i ∈ N is an index and H3 : GT → {0, 1}log p. Hi

2 can be
easily constructed from a keyed hash algorithm like MAC in
which an index i is used as a key.

3.3.1 SEPE

SEPE scheme consists of the following algorithms.

Initialize(1λ): The initialize algorithm randomly chooses a

prime p with the bit length λ and generates a bilinear group
G of order p with its generator g. Then, it outputs a tu-
ple Param=〈p, g,G,GT 〉 as a global parameter. Note that
Param is taken as an input implicitly next algorithms.
KeyGen(aux): The key generating algorithm takes a binary
string aux with arbitrary length as an auxiliary input and
computes S K = H0(aux) ∈ Z∗p. Then, it outputs S K as a
secret key.
Encrypt(S K,M): Let us denote S K=α ∈ Z∗p. The encryp-
tion algorithm first chooses r ∈ Z∗p at random and then
computes a ciphertext CT = 〈hr, gr,H3(e(h, gα)r)〉, where
h = H1(M) ∈ G.
GenToken(S K,M): Let us denote S K=α ∈ Z∗p. The al-
gorithm first chooses k ∈ Z∗p at random and then com-
putes a token of a plaintext M as T K = 〈hα+k, gk〉, where
h = H1(M) ∈ G.
Test(T K,CT): We assume that CT = 〈c1, c2, c3〉 for a plain-
text M and T K = 〈t1, t2〉 for a plaintext M′. The test algo-
rithm computes

γ = e(t1, c2)/e(c1, t2).

If c3 = H3(γ), it outputs ‘Yes’; if not, it outputs ‘No’.

The algorithm KeyGen generates a secret key from aux
which is distributed over {0, 1}∗. Let us denote the min-
entropy of the distribution of aux by Haux∞ .

Theorem 1. SEPE described above is semantically secure
against an adaptively chosen plaintext attack in the random
oracle model assuming that BDH is intractable and Haux∞ is
a polynomial in λ.

Proof . Refer to Appendix A for the proof. �

3.3.2 SEPEn

SEPEn scheme consists of the following algorithms.

Initializen(1λ
′
): The initialize algorithm parses an input

1λ
′

in a polynomial time as a tuple 〈1λ, d〉 that contains
two security parameters 1λ and d. The algorithm ran-
domly chooses a prime p with the bit length λ and gen-
erates G of order p with its generator g. Then, it outputs
Param=〈p, g,G,GT , d〉 as a global parameter. Note that the
security parameter d inherently defines a set of permutations
Φ in which a permutation domain is D = {1, 2, . . . , d} ⊂ N.
KeyGenn(aux): The key generating algorithm takes a binary
string aux with arbitrary length as an auxiliary input and out-
puts a secret key S K=〈α, π〉 by computing α = H0(aux) ∈
Z
∗
p and choosing randomly π from Φ.

Encryptn(S K,M): Let us denote S K=〈α, π〉, where α ∈
Z
∗
p and π : D → D ∈ Φ. The encrypt algorithm

first chooses r ∈ Z∗p at random and then computes h ∈
G by using two vectors �u = (1, 2, . . . , d) and �vπ =
(Hπ(1)

2 (M),Hπ(2)
2 (M), . . . ,Hπ(d)

2 (M)),

h = g�u·�vπ , where �u ·�vπ =
∑
i∈D

i · Hπ(i)2 (M).

188
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

Table 1 Comparison of predicate encryption schemes.

PEKS [9] Shen et al. [21] Blundo et al. [24] SEPE (SEPEn)

Secret key environment public-key symmetric-key symmetric-key symmetric-key
Predicate type equality multiple multiple equality
Cross-user deduplication No Yes Yes Yes
One-to-n token mapping No No No Yes

Ciphertext size |G| + log g ≥ 4|G| ≥ 2|G| + |GT | 2|G| + log g
Token size |G| ≥ 4|G| ≥ 2|G| 2|G|
Encrypt algorithm cost 2e+p ≥ 8m + 8e ≥ 3e 3e+p
GenToken algorithm cost e ≥ 8m + 8e ≥ 2e 2e
Test algorithm cost p ≥ 3m + 4p ≥ 2m + 2p m+2p

|G|: size of an element in G, |GT |: size of an element in GT , g: order of G, m: multiplication (division), e: exponentiation, p: pairing

The ciphertext is CT = 〈hr, gr,H3(e(h, gα)r)〉.
GenTokenn(S K,M): Let us denote S K=〈α, π〉. The algo-
rithm first chooses k ∈ Z∗p at random and then computes

h = g�u·�vπ = g
∑

i∈D i·Hπ(i)2 (M). The token of the plaintext M is
T K = 〈hk+α, gk〉.
Testn(T K,CT): We assume that CT = 〈c1, c2, c3〉 for a
plaintext M and T K = 〈t1, t2〉 for a plaintext M′. The test
algorithm computes

γ = e(t1, c2)/e(c1, t2).

If c3 = H3(γ), it outputs ‘Yes’; if not, it outputs ‘No’.

Theorem 2. SEPEn described above is semantically se-
cure against an adaptively chosen plaintext attack in the
random oracle model assuming that BDH is intractable and
Haux∞ is a polynomial in λ.

Proof . Refer to Appendix B for the proof. �

3.4 Discussion

We discuss the effectiveness of our constructions, SEPE
and SEPEn, by comparing with several predicate encryption
schemes that are similar to ours. Table 1 summarizes the
comparisons of predicate encryption schemes.

PEKS [9] is a public-key equality predicate encryption
scheme that allows to identify equality relations among ci-
phertexts and tokens. PEKS is designed to be run in the
public-key environment, and thus the equality of ciphertexts
that are encrypted with one’s public key can only be tested
with tokens that are generated with the corresponding pri-
vate key. This public-key setting is not suitable for cross-
user data deduplication, in which the equality test should be
performed across ciphertexts and tokens that are generated
with different users’ secret keys. For cloud storage services,
it is more desirable to perform data deduplication across
multiple users’ outsourced data than deduplicating only over
a user’s data, since it gives more chance of eliminating the
redundancy and saves more resources of the cloud server.

Cross-user deduplication can be implemented by a
symmetric-key type of predicate encryption algorithm. Shen
et al. [21] and Blundo et al. [24] proposed symmetric-key
predicate encryption schemes which support more general
predicates such as a comparison predicate (x ≥ a), a sub-
set predicate (x ∈ S), and arbitrary conjunctive predicates

(P1 ∧ P2 ∧ . . . ∧ Pl). Both schemes also support predicate
privacy, which is a security property that a token reveals no
information about the predicate that it contains. For data
deduplication that only the equality predicate is sufficient,
however, the feature that supports multiple predicates is not
necessary, and is inefficient in terms of ciphertext size (token
size) and computation time of encryption, token generation
and predicate testing. Predicate privacy is also unnecessary
for data deduplication, since only one type of predicate is
required.

SEPE and SEPEn are designed to be more suitable for
data deduplication. The symmetric-key based construction
makes it applicable to cross-user deduplication that elimi-
nates redundancy of data across multiple users. Moreover,
SEPE (SEPEn) uses less storage resources (i.e., size of ci-
phertexts and tokens) and incurs less computation, particu-
larly in Test algorithm that causes most of the computational
burden in the cloud server, compared with other symmetric-
key predicate encryption schemes. One-to-n token mapping
of SEPEn is another feature that makes our constructions
more useful for designing secure data deduplication.

4. The Proposed Data Deduplication Scheme

4.1 Definition and Notation

We state our definitions and notations. Table 2 gives the
description of notations to be used in the proposed scheme.
For each file, a data owner assigns a globally unique file id
f id and encrypts with a set of randomly chosen symmetric
encryption keys FEK={FEK1,FEK2,. . . ,FEKl}. Also, FEK
is encrypted with another secret key α. The cloud server
maintains a search index SI to retrieve a stored file in the
storage. SI is a list of entries in which each entry corre-
sponds to a file entity logically, and comprises a set of search
keys and an index value. Search keys include a file id f id
and two predicate ciphertexts CT f id, CTn, f id which are en-
crypted with SEPE and SEPEn, respectively. Files in the
storage are retrieved by the cloud server with one of search
keys.

The usage of a search key depends on a type of file
operation requested by users. An index value contains an
address addrFile at which the file is physically stored in the
system. Each SI entry has its address addrIndex and can be

SHIN and KIM: EFFICIENT AND SECURE FILE DEDUPLICATION IN CLOUD STORAGE
189

Table 2 Notations used in the proposed scheme description.

Notation Description
FEK1, . . . ,FEKl symmetric file encryption keys
SI search index for file retrieval in the cloud storage
f id a unique id assigned to each file
addrob j address at which an object ob j resides in the system
CT f id SEPE ciphertext of a file of f id
CTn, f id SEPEn ciphertext of a file of f id
CT [i]

f id i-th element of CT f id (i=1,2,3)

CT [i]
n, f id i-th element of CTn, f id (i=1,2,3)

T K f id token which corresponds to ciphertext CT f id

T Kn, f id token which corresponds to ciphertext CTn, f id

T K[i]
f id i-th element of T K f id (i=1,2)

T K[i]
n, f id i-th element of T Kn, f id (i=1,2)

{M}key ciphertext of M encrypted by a symmetric encryption
algorithm with an encryption key key

<i1,i2,. . .,in> tuple of n elements i1, i2, . . . , in

Fig. 2 A search index and a file storage on a cloud server.

referenced through the address. Figure 2 shows the format
of a SI entry and the structure of file storage.

For data reliability, an erasure code is used in the pro-
posed scheme. An erasure (x, y)-code is an encoding func-
tion E : X → Y that transforms a message X comprised of x
symbols to the code Y of x + y redundant symbols such that
any x of them are sufficient to reconstruct the original mes-
sage X. The number of losses that the erasure code E can
sustain is y, while the redundancy factor is RD = (x + y)/x.

4.2 Scheme Description

The proposed scheme is composed of several system level
operations: System Setup, New File Upload, File Access,
File Update and File Deletion.

System Setup: Initially, the cloud server and data owners
have agreed two security parameters λ and d. The cloud
server calls the algorithm Initializen(〈λ, d〉) and outputs the
global parameter Param=〈p, g,G,GT , d〉. The parameters
p, g, G and GT will be used commonly in both of SEPE and
SEPEn.

New File Upload: When uploading a file to the cloud server,
a data owner proceeds as the following:

1. assign a unique file id f id to this data file.
2. generate a secret key 〈α, π〉 by running KeyGenn(File),

where File is a binary representation of this file con-
tent. (α is also assigned to the secret key of SEPE.)

3. compute two tokens T Kf id and T Kn, f id by running
GenToken(α, File) and GenTokenn(〈α, π〉, File), re-
spectively.

4. compute two ciphertexts CT f id=Encrypt(α, File) and
CTn, f id=Encryptn(〈α, π〉, File).

5. query to the cloud server with a tuple < f id, T Kf id,
T Kn, f id, CT f id, CTn, f id>.

To ensure that the tuple is correct, the data owner is
requested to compute ciphertexts and tokens by sharing ran-
dom values r, k ∈ Z∗p between SEPE and SEPEn at steps 3

and 4 above. (Thus, the tuple should satisfy CT [2]
f id = CT [2]

n, f id

and T K[2]
f id = T K[2]

n, f id.)

(Tuple verification) Upon receiving the tuple, the
cloud server first verifies the consistency of a re-
ceived tuple by checking both Testn(T Kn, f id,CTn, f id) and
Test(T Kf id,CT f id) output ‘Yes’. Then, the cloud server
continues to test the Eqs. (1), (2) and (3).

e
(
CT [1]

f id,T K[1]
n, f id

)
= e

(
CT [1]

n, f id,T K[1]
f id

)
(1)

CT [2]
f id = CT [2]

n, f id (2)

T K[2]
f id = T K[2]

n, f id. (3)

If one of the verification processes fails, the cloud
server reports an error and halts the operation.

(Deduplication) If the tuple is successfully verified, the
cloud server retrieves entries in the search index SI com-
paring T Kn, f id with CTn, f id′ of each SI entry through the al-
gorithm Testn(T Kn, f id, CTn, f id′). If a matching entry found,
the cloud server gets an address addrFile from the entry and
creates a new entry 〈 f id, CT f id, CTn, f id, addrFile〉. Then
the cloud server appends it to SI and responds the data
owner with a message FileExist (i.e., client-side dedupli-
cation event occurs). If not, the cloud server responds with
a message FileNotExist.

Upon receiving a message FileNotExist, the data
owner continues to upload the actual file to the cloud server
as the following:

1. transform File into F by running the erasure code E,
and split F according to block length b (e.g., b=512
bits) into l blocks F1,F2, . . . ,Fl (padding is added if
the length of F is not aligned to b).

2. choose randomly encryption keys FEK1,FEK2, . . . ,
FEKl from the key space.

3. encrypt the file blocks with a symmetric encryption al-
gorithm C = 〈{F1}FEK1 ,{FEK1}α,. . . ,{Fl}FEKl ,{FEKl}α〉,
where α is a hashed value of the file described above.

4. send a tuple < f id, C> to the cloud server.

Upon receiving the message < f id, C> from the data
owner, the cloud server finds the same file comparing T Kf id

with CT f id′ of each SI entry through Test(T Kf id, CT f id′).
If the same file already exists in the storage, the cloud

server randomly picks lr (0 ≤ lr ≤ l), and replaces lr ar-
bitrary blocks of the existing file (including their FEKs) by

190
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

newly uploaded lr blocks from C.
The cloud server then creates new entry 〈 f id, CT f id,

CTn, f id, addrFile〉, where addrFile is from the matching entry
and appends it to SI (i.e., server-side deduplication event
occurs). If not found, the cloud server allocates new storage
space with new address addrFile and puts the encrypted file
C into the file system. Then the server creates new SI entry
〈 f id, CT f id, CTn, f id, addrFile〉 and appends it to SI. Instead
of two distinct searches in this operation, it is possible to
perform a single search during uploading by retrieving SI
with CT f id and CTn, f id at once.

As described above, the hashed value α acts not only
as a plaintext of SEPE and SEPEn but also as an encryption
key of FEK associated with the file itself. Using α as an
encryption key helps keeping the system simple, since data
owners in possession of same file should also exclusively
share a hashed value of the file without any explicit key shar-
ing. If a random encryption key is used instead of the file
hash, then we will need costly key management mechanism
such as broadcast encryption [25] to share the key among
data owners who have a common file. Such a strategy is
similar to convergent encryptions, but not the heart of the
technique that enables deduplication contrary to convergent
encryptions.

File Access: A user authorized to access a file stored in
a cloud storage should be in possession of 〈 f id, α〉 of the
file. The user sends a file access request message with a
file id f id. The cloud server finds the stored file retriev-
ing the search index SI with a search key f id. If found,
the cloud server accesses the file in the file system with
the address addrFile from the matching entry, and returns
C = 〈{F1}FEK1 ,{FEK1}α,. . . ,{Fl}FEKl ,{FEKl}α〉 to the user.
The user will recover the encrypted file with a decryption
key α. The search index SI can be ordered according to a
search key f id thus can be built into a tree-structure. The
search operation cost with a search key f id then becomes
O(log n), where n denotes the size of SI.

File Update: The procedure for updating a file is fully equal
to New File Upload operation.

File Deletion: The data owner sends a file deletion request
with f id. The cloud server searches a matching SI entry
associated with f id. If the searched file is associated with
more f ids other than the requested one, the cloud server
just removes the entry from SI. Otherwise, the server also
removes the actual file in the storage.

4.3 Efficiency Improvements

We present how to improve efficiency of the proposed
scheme and to enhance its performance.

4.3.1 Auxiliary Search Index

The operations of New File Upload and File Update require
a search operation on the search index SI. Since SI entries

cannot be sorted with respect to search keys CT and CTn,
the searching cost is linear to the size of SI (i.e., the num-
ber of files). In this section, we describe a technique that
improves the efficiency of the proposed scheme in terms of
searching cost. An idea behind the technique is motivated
from the fact that the size of uploading files is distributed
between a few to giga bytes and the cloud server can get in-
formation of the size of a file from the encrypted one. Our
idea is to use an auxiliary search index (AI) in addition
to SI. In AI, the size of a file is actually a search key,
and an index value contains addrIndex, an address of the SI
entry that indicates the corresponding file. Each AI entry
can be sorted with respect to its search key. With help of
a tree structure like B+-tree, an item insertion, deletion and
searching operation inAI can be handled in an efficient and
scalable manner.

When a data owner uploads (or updates) a file, the
data owner sends a tuple <size, f id, T Kf id, T Kn, f id, CT f id,
CTn, f id> to the cloud server. Then, the server first looks up
AI entries that correspond to size. If found, the cloud server
gets matching SI entries which are addressed by addrIndex.
The number of matching SI entries may be one or more
according to a density of file size distribution. The cloud
server then enumerates the matching SI entries and finds a
corresponding entry such that Test (or Testn) algorithm re-
sults in ‘Yes’. In this technique, using AI limits efficiently
the search scope of SI thus eventually reduces searching
cost to sub-linear complexity. In order to use this technique,
the original scheme should be slightly modified. The only
difference from the original scheme is that size field is added
on the above tuple in this technique.

4.3.2 Tradeoff between Security and Network Efficiency

The proposed scheme is designed to be resistant against the
online guessing attack. While an unauthorized user has dif-
ficulty in guessing the content of a stored file, usual file up-
load operation may also have little chance that a client-side
deduplication event occurs, which eventually causes the in-
crease of network transmission overhead. In order to avoid
losing network transmission efficiency, the proposed scheme
allows the security parameter d of SEPEn to be selected on
the tradeoff between the security and the efficiency. The se-
curity parameter d denotes a domain size of permutation and
actually determines the size of set of all permutations with a
domain D such that |D|=d. Hence, the lower value of d gives
higher probability that client-side deduplication occurs and
vice versa.

This tradeoff is reasonable in practical applications.
Data owners may upload not only high privacy requiring
files that contain personal information but also common files
like software setup files. The uploading files may also vary
between high and low entropy. In the proposed scheme, the
value of d is globally chosen in system setup phase. How-
ever, it is not difficult to modify the proposed scheme to
allow d be selected for each file in uploading phase. Each
file’s security parameter d can be decided based on its prop-

SHIN and KIM: EFFICIENT AND SECURE FILE DEDUPLICATION IN CLOUD STORAGE
191

erties like the entropy or the required level for privacy. File
size can be another decision factor of d because it is reason-
ably assumed that file size and its entropy are highly corre-
lated with each other [3]. For example, a file that requires
no privacy or its size is greater than some threshold may
be given its security parameter d = 1, which implies that
client-side deduplication will always occur with probability
1 if the same file has existed in the cloud server.

A quantitative analysis of the relation between the se-
curity parameter d and both security and the network trans-
mission overhead will be presented in Sect. 5.2.2.

4.4 Improving Reliability of the Cloud Storage

By applying a general data replication mechanism to the
proposed scheme, we can further improve reliability of the
scheme against malicious data owners incurring data loss. A
data replication mechanism, where replication factor (RP) is
r, creates r replicas of a data object and stores them across
geographically distributed storage systems.

New File Upload operation of the proposed scheme is
extended to utilize such a data replication as follows. When
accepting < f id,C > from a data owner, the cloud server
searches on SI by using Test algorithm. If a matching en-
try is found (i.e., server-side deduplication event occurs), the
cloud server gets addrFile from the SI entry and determines
the locations of existing replicas for the file. If the number
of the existing replicas is less than r, a new one is allocated
to store C = 〈{F1}FEK1 ,{FEK1}α,. . . ,{Fl}FEKl ,{FEKl}α〉. Oth-
erwise, the cloud server selects one of them and replaces lr
blocks of the chosen replica, where lr is randomly picked
from {0, 1, . . . , l}, by new blocks of C. In other cases, the
cloud server follows the original protocol described in the
previous section.

With help of an erasure (x, y)-code, corrupted data can
be recovered as long as at least �lx/(x + y)� blocks among
r replicas stored within the storage sustain the corruption,
where l is the number of blocks of the file.

Note that data replication is orthogonal to data dedupli-
cation. Goals of removing data redundancy and improving
reliability can be achieved simultaneously using both data
replication and data deduplication together.

5. Analysis

In this section, we first present the security analysis of the
proposed scheme. Then, we present the storage, communi-
cation and computation performance analysis.

5.1 Security Analysis

5.1.1 Data Confidentiality

In the proposed scheme, files in the cloud storage are
encrypted with a symmetric encryption algorithm like
AES [26]. Encrypting the file generates a randomized ci-
phertext, because FEK is randomly chosen from the key

space. Therefore any adversary including the cloud server
who has only ciphertexts of the file cannot distinguish it
from the random data. That is, the adversary does not know
any information of the content of a file.

The cloud server will perform data deduplication
through running Test and Testn algorithm with inputs of to-
kens and ciphertexts of SEPE and SEPEn. Unless tokens are
given, the cloud server has negligible advantage in getting
any information of the plaintext from its ciphertexts by the-
orems, Theorems 1 and 2. Although the cloud server may
have knowledge of equivalence relations among the cipher-
texts in the search index, Theorem 3 says that any PPT al-
gorithm including the test algorithms, Test and Testn, does
not reveal any partial information to the cloud server other
than the equivalence relation.

Note that the cloud server obviously can infer to the
information of file size from the corresponding ciphertext
because the file size and its ciphertext size are inherently
correlated with each other.

Theorem 3. For any two plaintexts M and M′ such that
M�M′, any PPT algorithm given SEPE (or SEPEn) cipher-
texts and tokens of M and M′ as inputs cannot output any
partial information of the plaintexts M and M′ under the
random oracle assumption.

Proof . For the sake of simplicity, let us assume that hash
functions used in SEPE and SEPEn (i.e., H1, H2) are de-
noted as F : {0, 1}∗ → G. In computation of the tokens and
the ciphertexts, the plaintext M and M′ are given as inputs
in evaluating the hash function F. By collision resistance
property of a cryptographic hash function, it is highly un-
likely that F(M)=F(M′) for any two different plaintext M
and M′. Besides, using the fact that a cryptographic hash
function can be modeled as a random oracle [27], both of
F(M) and F(M′) will be indistinguishable from random in
G. Therefore, in the case of Test and Testn algorithm, an
intermediate computation result γ will be indistinguishable
from a random data in GT , and the test algorithm will even-
tually result in meaningless output ‘No’. Another PPT algo-
rithms given ciphertexts and tokens of M and M′ as inputs
will also eventually output a data that looks like a random
from the view of the algorithm. �

5.1.2 Resistance against Online Guessing Attack

Now we analyze security against an adversary who mounts
online guessing attack to figure out the information of inter-
esting file in the cloud storage. The adversary is neither in
possession of the file nor its hashed value. However, the ad-
versary may have relatively small search domain for the file
because the file has inherent low-entropy property or he has
some knowledge of it. For each candidate in the search do-
main the adversary generates a token T Kn and then queries
the token to the cloud server. If a matching ciphertext CTn

exists such that Testn(CTn,T Kn) results ‘Yes’ for the query,
the cloud server will respond with a message FileExist in-

192
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

dicating deduplication (at client-side) event occurs. The ad-
versary will continue querying to the cloud server until re-
ceiving FileExist.

In the attack scenario, an adversary may select a cor-
rect candidate in high likelihood of matching the target file.
However, the adversary should query a correct token T Kn

for the selected candidate in order to render a deduplication
event (at client-side). Theorem 4 says that a probability
that an adversary computes a correct token T Kn such that
Testn(CTn, T Kn) results in ‘Yes’ is negligible in the secu-
rity parameter d. Hence, the proposed scheme is resistant
against online guessing attacks.

Theorem 4. For any PPT algorithmA, the probability that
A outputs the corresponding token T Kn for given SEPEn

ciphertext CTn is negligible in the security parameter d.

Proof . Let us assume a PPT algorithm A which com-
putes a token T Kn for a corresponding SEPEn ciphertext
CTn. A is given d, g, α and CTn as inputs and tries to
find out the correct token T Kn. We also assume that CTn

=〈hr, gr,H3(e(h, ga)r)〉, where r is chosen at random from
Z
∗
p. IfA can get h from hr, it is obvious that A easily com-

putes the corresponding token T Kn=〈hk+α, gk〉 with given h,
where k is chosen randomly from Z∗p. However, the prob-
lem that computes h from hr in a cyclic group G is not easier
than the discrete logarithm problem (DLP) on elliptic curves
which is generally known to be computationally infeasible
for any PPT algorithm if p is sufficiently large [23]. Hence,
the best way for A to find out the token is to choose one
of possible tokens randomly and test it by running Testn al-
gorithm. A can choose a token at random by tossing coins
to choose a random permutation π : D → D, where D =
{1, 2, . . . , d}. Now we analyze the probability thatA outputs
the correct token T Kn given the input CTn. Let us denote a
set of all permutations π : D→ D asΦ. We assume that CTn

has been computed with a permutation π. That is, h = g�u·�vπ
in CTn, where �u · �vπ = ∑

i∈D iHπ(i)2 (M). When algorithm A
chooses randomly a permutation π′ from Φ, h is computed
as h = g�u·�vπ′ in T Kn, where �u · �vπ′ = ∑

i∈D iHπ
′(i)

2 (M). Note
that �u ·�vπ and �u ·�vπ′ also can be represented as �u ·�vπ = pk+ r
and �u · �vπ′ = pk′ + r, where p is order of G, k, k′ ∈ N and
0 ≤ r, r′ < p. Let us denote an event p(k − 1) ≤ �u ·�vπ′ < pk
as Ek. Then, the probability is

Pr{A outputs the correct T Kn}
= Pr{π′ R←Φ , Testn(CTn,T Kn) = ‘Yes’ }
= Pr{π′ R←Φ , g�u·�vπ = g�u·�vπ′ }
= Pr{π′ R←Φ , �u ·�vπ = �u ·�vπ′ mod p}
≤

∑
k∈N

Pr{r = r′|Ek}Pr{π′ R←Φ , Ek}

≤
∑
k∈N

Pr{π′ R←Φ , π = π′}Pr{π′ R←Φ , Ek}

= Pr{π′ R←Φ , π = π′}
∑
k∈N

Pr{π′ R←Φ , Ek}

≤ Pr{π′ R←Φ , π = π′}
=

1
d!
≤ 1

2d−1
.

Therefore, the probability that A outputs the corre-
sponding T Kn is negligible in the security parameter d. �

5.1.3 Collusion-Resistance

Unauthorized users and even other data owners who do not
have an access right to their interesting file can collude to-
gether to access the file. They should know the correct ac-
cess token 〈 f id, α〉 in order to get the file via File Access
operation. Hence they will try to compute 〈 f id, α〉 from in-
formation such as secret keys or tokens which they have.
Assuming that f id is chosen from sufficiently large space
and kept secret to the authorized users and data owners, the
colluding adversaries cannot compute f id since f id is inde-
pendent of any information which they have.

They may also try to compute the corresponding to-
kens T K, T Kn to take advantage of a side channel on client-
side deduplication. However, since a permutation π of CTn

corresponding the file was chosen from Φ at random and
is independent of any information, it is impossible for the
colluding adversaries to get the file by Theorem 4.

5.1.4 Resistance against Malicious Data Owner

We analyze security of the proposed scheme against two
kinds of attacks, which are launched by a malicious data
owner who does not follow the protocol and behaves dis-
honestly.

Server-side deduplication disturbing attack: Let us con-
sider a malicious data ownerM who tries to disturb server-
side deduplication so as to intentionally reduce the available
storage resources of the cloud server. During New File Up-
load operation,M would mount such an attack by compos-
ing the wrong tuple < f id,T K′f id,T Kn, f id,CT ′f id,CTn, f id >,
where T K′f id, CT ′f id are calculated using the randomly gen-
erated secret key α′ (� α).

For the proposed scheme, this attack does not succeed,
since the correctness of the received tuple is verified by the
cloud server before acceptance. By definition of bilinear
map (in Sect. 3.2.1) and definition of our construction, it
is infeasible for M to compose the wrong tuple such that
T K′f id, CT ′f id are calculated using randomly generated α′,
while also satisfying the Eqs. (1)–(3) in Sect. 4.2, as well as
allowing Test(T K′f id,CT ′f id) to output ‘Yes’.

Duplicate faking attack: We consider a malicious data
owner M who tries to corrupt other users’ data. Dur-
ing New File Upload operation, M may send a tuple <
f id,T Kf id,T Kn, f id,CT f id,CTn, f id > for File correctly, but
then upload a fake < f id,C′ >, where C′ is constructed from
File′(� File) or a wrong secret key α′(� α). We analyze se-
curity against such an attack in terms of two properties; (i)
corruption detectability and (ii) data recoverability.

SHIN and KIM: EFFICIENT AND SECURE FILE DEDUPLICATION IN CLOUD STORAGE
193

Fig. 3 File recoverability against fake uploads.

The proposed scheme ensures that the corruption of
File is always detected by data owners or their authorized
users who treat the same file. Let us denote a decryption of
ciphertext E with a key k by Dec(k, E), n-th element of a
tuple T by T [n], and a decoding function of an erasure code
E byD. Data corruption can be detected as follows.

1. get C = 〈{F1}FEK1 ,{FEK1}α,. . . ,{Fl}FEKl ,{FEKl}α〉 via
File Access operation.

2. for each Ti=〈{Fi}FEKi , {FEKi}α〉 in C, where 1 ≤ i ≤ l,
compute vi=Dec(Dec(α,T [2]

i),T [1]
i).

3. compute w = D(v1||v2|| . . . ||vl), and z = KeyGen(w).
4. test z = α.

If z is not equal to a secret key α, then the file is cor-
rupted.

With help of data replication, the proposed scheme also
ensures that with high probability, a file can be recovered
from corruption against fake uploads by M. To justify
our argument, we conducted a simulation, in which New
File Upload operations for the same file (the block size is
b = 512 and the number of blocks is l = 16, 384) were per-
formed in 1,000 times including fake uploads among them.
The ratio of the fake uploads varies from 0 to 0.99. At each
New File Upload operation, it was checked that sufficient
blocks on the storage remain uncorrupted for recovery.

Figure 3 shows the simulation result. RP refers to a
replication factor of data replication mechanism (i.e., the
number of replicas), and RD to a redundancy factor of the
erasure code. With RP=10 and RD=1.5, the probability of
successfully recovering corrupted data is more than 95%.

5.2 Performance Analysis

5.2.1 Storage Overhead

When a data owner uploads a file to the cloud server, data
deduplication will always occur either at client-side or at
server-side, if the same file exists in the cloud storage. That

is, the proposed scheme always removes redundant copies
of a file across multiple users, thus keeps the cloud storage
optimized in terms of disk space utilization.

Additional storage overhead may be introduced due to
the search index. The size of SI or AI entry, however, is
negligible compared to the size of corresponding file.

Employing data replication, which is discussed in
Sect. 4.4, may increase the required storage capacity. In
the proposed scheme, however, data replication is run over
deduplicated data, and thus is independent of eliminating
the redundancy. The amount of increased storage resources
does not exceed by the replication factor of a data replication
mechanism.

5.2.2 Network Transmission Overhead

The hybrid approach that prevents the online guessing at-
tack may introduce some network transmission overhead
due to unnecessary file uploads. We analyze how much the
network bandwidth is actually consumed for the proposed
scheme.

For this, we compare the proposed scheme with a ba-
sic scheme, which is exactly same to the proposed scheme
except that client-side deduplication always occurs (i.e., the
security parameter d = 1). Note that the basic scheme in-
curs no network transmission overhead at all. Thus, the dif-
ference Δ between the amount of network bandwidth con-
sumed for the proposed scheme and the amount for the basic
scheme represents the network transmission overhead of the
proposed scheme.

Several events in New File Upload operation are de-
fined as follows:

1. E: The file F exists in the cloud storage.
2. TP: New File Upload operation transmits the actual

copy of F in the proposed scheme.
3. TB: New File Upload operation transmits the actual

copy of F in the basic scheme.

From the security analysis in Sect. 5.1.2, we have
Pr{TP | E}≥ 1 − 1

d! . Without loss of generality, we assume
Pr{TP | E}= 1 − 1

d! in this section. Note that Pr{TB | E}=0.
The probability that the event TP occurs is

Pr{TP} = Pr{TP | E}Pr{E} + Pr{TP | ¬E}Pr{¬E}
= Pr{TP | E}Pr{E} + Pr{¬E}
= Pr{TP | E}Pr{E} + 1 − Pr{E}
=

(
1 − 1

d!
− 1

)
Pr{E} + 1 = −Pr{E}

d!
+ 1.

By the similar way, the probability that the event TB

occurs is Pr{TB}=1-Pr{E}.
The expected amount of network traffic in uploading

the file F for the proposed scheme and the basic scheme are
s·Pr{TP} and s·Pr{TB}, respectively, where s is the size of F .
Thus, the network transmission overhead of the proposed
scheme can be represented by the difference Δ

194
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

Fig. 4 Tradeoff between security and the network transmission overhead
over the security parameter d (The file size of FA and FB is 90 MBs,
Pr{EFA } = 0.001 and Pr{EFB } = 0.3).

Δ =| sPr{TP} − sPr{TB} |= sPr{E}
(
1 − 1

d!

)
. (4)

For each file in the cloud storage, the probability Pr{E}
will be distributed between 0 to 1 according to its proper-
ties, especially to the type of file content. That is, it is easily
inferred that common files (e.g., software install files) usu-
ally have high Pr{E}, and private files, that contain sensitive
and personal information, requiring high privacy have low
Pr{E}. From the above equation, we can observe that as
Pr{E} goes to 0, so does Δ, while Δ closes to s(1 − 1/d!) as
Pr{E} goes to 1. This result implies that we can reduce over-
all network transmission overhead substantially by just only
decreasing the security parameter d of common files, while
keeping private file’s parameter d high, as we described in
Sect. 4.3.2.

Let us consider an example that a data owner uploads
two files FA and FB, which represent a private file and a
common file, respectively. Suppose that the size of both FA

and FB is 90 MBs and the probabilities that the file exists
in the cloud storage are Pr{EFA } = 0.001 and Pr{EFB} = 0.3.
Figure 4 shows the quantitative relation between the security
parameter d and both security (i.e., probability p = 1

d! that
an adversary computes the correct T Kn) and the network
transmission overhead (ΔFA for FA and ΔFB for FB). Setting
the parameter d to 11 for both FA and FB raises the overall
network transmission overhead (ΔFA + ΔFB) to more than
26 MBs. On the other hand, the overall overhead can be
reduced to 92 KBs by just only decreasing the common file
FB’s parameter d to 1, while keeping the probability p of the
private file FA lower than 2−24.

5.2.3 Computation Overhead

Computational burden at the cloud server is mainly intro-
duced by searching over the storage. We analyze the compu-
tation complexity for the following operations that perform

Table 3 Computation complexity of the proposed scheme considering
two strategies: SI and SI withAI (SI+AI).

Operation
The Proposed Scheme
SI SI+AI

New File Upload O(Ns) O(log Na + Ns,a)
File Update O(Ns) O(log Na + Ns,a)
File Access O(log Ns) O(log Ns)

the searching: New File Upload, File Update, File Access.
In New File Upload and File Update operation, the

cloud server searches the matching file in SI through two
search keys CT and CTn. For eachSI entry the cloud server
compares it with given tokens by computing Test and Testn
algorithms which require two pairings and one multiplica-
tion over GT . Let us denote Ns as the total number of SI
entries, Na as the total number of AI entries and Ns,a as
the number of SI entries which correspond to the matching
AI entry. The computation complexity of New File Upload
and File Update are shown in Table 3. With help ofAI, the
proposed scheme (SI+AI in Table 3) can have sub-linear
complexity in this operations.

In File Access operation, SI is retrieved through the
search key f id. Since SI is sorted according to f id, the
searching cost is more efficient than that of above operations
as shown in Table 3. We also note that no cryptographic
operations are needed in comparison over f id.

6. Related Work

Existing approaches related to our proposed scheme include
1) secure data outsourcing and 2) data deduplication using
convergent encryption.

Most of them addressed the issue of secure data out-
sourcing in terms of cryptographic access control as well as
searching over encrypted data. In order to achieve a goal
of fine-grained access control and efficient revocation over
the outsourced data, various techniques are proposed built
on attribute-based encryption (ABE) [28], [29], which is a
cryptographic primitive that ensures access control over en-
crypted data. S. Yu et al. addressed an issue of attribute re-
vocation and proposed two solutions [5] and [4] in CP (Ci-
phertext Policy)-ABE and KP (Key Policy)-ABE, respec-
tively. J. Hur et al. [6] combines CP-ABE and broadcast
encryption technique [25] to enable more fine-grained ac-
cess control with efficient and scalable revocation capability.
Z. Zhou et al. [7] and M. Green et al. [8] considered ABE
encryption and decryption overhead at client side, which
grows with the complexity of the access formula. They pro-
posed solutions that outsource the computation burden to the
cloud server while preserving privacy of outsourced data.

Besides an issue of access control, it is also important
to solve the problem of searching over encrypted data in se-
cure data outsourcing. D. Boneh et al. [9] first described
the notion of predicate encryption and gave PEKS, a con-
crete implementation of equality predicate encryption in the
public-key setting. Their solution is suitable for a secure e-
mail server which is possible for the untrusted server to re-

SHIN and KIM: EFFICIENT AND SECURE FILE DEDUPLICATION IN CLOUD STORAGE
195

trieve encrypted mails. Several approaches addressed issues
of efficient searching over encrypted data through tree-based
indexing. M. Bellare et al. [11] and S. Sedghi et al. [12] pro-
posed deterministic encryption in which the searching cost
is O(log n) in the public-key setting and the symmetric-key
setting, respectively. Due to a deterministic property, these
solutions [11], [12] loose some security, as noted in [10]. R.
Curtmola et al. [10] and C. Dong et al. [13] focused on en-
hancing security notions of previous solutions.

The notion of convergent encryption was first presented
in [16] as a rough idea. Convergent encryption uses a
hashed value computed from a file as an encryption key
of the file itself. Any client encrypting a given data chunk
will use the same key to do so, thus identical plaintext val-
ues will encrypt to identical ciphertext values, regardless
of who encrypts them. This helps the storage server per-
form data deduplication on the encrypted data. Several so-
lutions after [16] fundamentally follow this strategy. M.
Storer et al. [15] further extended [16] and implemented data
deduplication framework on the encrypted data storage. L.
Marques et al. [17] and P. Anderson et al. [18] utilized con-
vergent encryption to address different applications such as
mobile devices. The security of convergent encryption can-
not be guaranteed strongly due to its inherent deterministic
property, and even has not been rigorously analyzed yet in
the previous approaches.

7. Conclusion

This paper aims at achieving both cost efficiency and data
security in cloud computing. One challenge in this context
is to build a data deduplication system which offers cost sav-
ings in terms of disk space and network bandwidth utiliza-
tion, while also providing data security and privacy against
the untrusted cloud server and the unauthorized users. In
this paper, we proposed an efficient and secure data dedupli-
cation scheme to resolve the challenging issue. In order to
achieve both of efficiency and security, we constructed two
equality predicate encryption schemes in the symmetric-key
setting, on which the proposed data deduplication scheme
is built. Our rigorous security proofs show that our pro-
posed scheme is provably secure under cryptographic secu-
rity models.

Acknowledgements

This research was funded by the MSIP (Ministry of Science,
ICT & Future Planning), Korea in the ICT R&D Program
2013.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al., “Above the
clouds: A berkeley view of cloud computing,” Technical Report
UCB/EECS-2009-28, 2009.

[2] D. Russell, “Data deduplication will be even bigger in 2010,” Gart-
ner, Feb. 2010.

[3] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in
cloud services: Deduplication in cloud storage,” IEEE Security and
Privacy Magazine, vol.8, pp.40–47, Nov. 2010.

[4] S. Y, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” Proc. IEEE
Conf. Information Comm. (INFOCOM’10), pp.534–542, 2010.

[5] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data shar-
ing with attribute revocation,” Proc. ACM Symp. Information, Com-
puter and Comm. Security (ASIACCS’10), pp.261–270, 2010.

[6] J. Hur and D.K. Noh, “Attribute-based access control with efficient
revocation in data outsourcing systems,” IEEE Trans. Parallel Dis-
trib. Syst., vol.22, pp.1214–1221, July 2011.

[7] Z. Zhou and D. Huang, “Efficient and secure data storage opera-
tions for mobile cloud computing.” Cryptology ePrint Archive, Re-
port 2011/185, 2011. http://eprint.iacr.org/.

[8] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the decryp-
tion of abe ciphertexts,” Proc. USENIX Conf. Security (SEC’11),
2011.

[9] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” Proc. Eurocrypt’04, pp.506–
522, 2004.

[10] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient construc-
tions,” Proc. ACM Conf. Computer and Comm. Security (CCS’06),
pp.79–88, 2006.

[11] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and ef-
ficiently searchable encryption,” Proc. CRYPTO’07, pp.535–552,
2007.

[12] S. Sedghi, P. van Liesdonk, J.M. Doumen, P.H. Hartel, and
W. Jonker, “Adaptively secure computationally efficient searchable
symmetric encryption,” Technical Report TR-CTIT-09-13, Centre
for Telematics and Information Technology University of Twente,
April 2009.

[13] C. Dong, G. Russello, and N. Dulay, “Shared and searchable en-
crypted data for untrusted servers,” Journal of Comput. Secur.,
vol.19, pp.367–397, Aug. 2011.

[14] M. Mulazzani, S. Schrittwieser, M. Leithner, M. Huber, and
E. Weippl, “Dark clouds on the horizon: using cloud storage as at-
tack vector and online slack space,” Proc. USENIX Conf. Security
(SEC’11), 2011.

[15] M.W. Storer, K. Greenan, D.D. Long, and E.L. Miller, “Secure data
deduplication,” Proc. ACM Int’l Workshop on Storage security and
survivability (StorageSS’08), pp.1–10, 2008.

[16] J.R. Douceur, A. Adya, W.J. Bolosky, D. Simon, and M. Theimer,
“Reclaiming space from duplicate files in a serverless distributed file
system,” Proc. Int’l Conf. Distributed Computing Systems (ICDCS
’02), 2002.

[17] L. Marques and C.J. Costa, “Secure deduplication on mobile de-
vices,” Proc. Workshop on Open Source and Design of Communi-
cation (OSDOS’11), pp.19–26, 2011.

[18] P. Anderson and L. Zhang, “Fast and secure laptop backups with en-
crypted de-duplication,” Proc. Int’l Conf. Large installation system
administration (LISA’10), pp.1–8, 2010.

[19] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
computer and system sciences, vol.28, no.2, pp.270–299, 1984.

[20] D. Boneh, A. Sahai, and B. Waters, “Functional encryption:
definitions and challenges,” Proc. Conf. Theory of cryptography
(TCC’11), pp.253–273, 2011.

[21] E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” Proc. Conf. Theory of Cryptography (TCC’09), pp.457–
473, 2009.

[22] D. Boneh and M.K. Franklin, “Identity-based encryption from the
weil pairing,” Proc. CRYPTO’01, pp.213–229, 2001.

[23] A. Joux, “The weil and tate pairings as building blocks for public
key cryptosystems,” Proc. Int’l Symp. Algorithmic Number Theory
(ANTS’05), pp.20–32, 2002.

[24] C. Blundo, V. Iovino, and G. Persiano, “Private-key hidden vector

196
IEICE TRANS. INF. & SYST., VOL.E97–D, NO.2 FEBRUARY 2014

encryption with key confidentiality,” Proc. Cryptography and Net-
work Security 2009 (CANS’09), pp.259–277, 2009.

[25] D. Naor, M. Naor, and J.B. Lotspiech, “Revocation and trac-
ing schemes for stateless receivers,” Proc. CRYPTO’01, pp.41–62,
2001.

[26] J. Daemen and V. Rijmen, The design of Rijndael: AES-the ad-
vanced encryption standard, 2002.

[27] M. Bellare and P. Rogaway, “Random oracles are practical: a
paradigm for designing efficient protocols,” Proc. ACM Conf. Com-
puter and Comm. Security (CCS’93), pp.62–73, 1993.

[28] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based en-
cryption for fine-grained access control of encrypted data,” Proc.
ACM Conf. Computer and Comm. Security (CCS’06), pp.89–98,
2006.

[29] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” Proc. IEEE Symp. Security and Privacy
(SP’07), pp.321–334, 2007.

Appendix A: Proof of Theorem 1

Proof . Suppose A is an adversary algorithm that tries to
break SEPE. A may run in two ways; (1) guessing a binary
string aux to extract the secret key and (2) performing the
security game described in Sect. 3.1.2.

Let us denote by p(·) a polynomial function. Since the
min-entropy of the distribution of aux is Haux∞ = p(λ), A’s
probability of guessing the correct aux is 2−p(λ). Thus, ex-
tracting the correct secrete key is infeasible.

The only way to break SEPE is by the security game.
Suppose that A has advantage ε in breaking SEPE by run-
ning the security game. We show that an algorithm B that
solves the BDH problem can be constructed using algo-
rithm A. Suppose A makes at most qC ciphertext queries,
qT tokens queries and at most qH3 hash function queries
to H3. Then, the advantage of algorithm B is at least
ε′ = ε/eqH3 (qT + qC), where e is the base of the natu-
ral logarithm. If the BDH assumption holds in G, then ε′
is negligible in λ and consequently ε must be negligible
in λ. Let g be a generator of G. Algorithm B is given
g, u1 = g

α, u2 = g
β, u3 = g

γ ∈ G. B simulates the challenger
and interacts with algorithmA to output v = e(g, g)αβγ ∈ GT

as follows:
Setup: Algorithm B gives A the global parameter: 〈p, g,
G,GT 〉.
H1-queries: Algorithm A can make queries to the random
oracle H1 at any time. Bmaintains the H1-list which is a list
of tuples 〈Mi, hi, ai, ki, ri, ci〉 to respond to the query. The
list is initially empty. Here i represents the sequence of the
queries (1 ≤ i ≤ qC + qT). For each query Mi ∈ {0, 1}∗,
algorithm B responds as follows:

1. If the query Mi is already in the H1-list in a tuple
〈Mi, hi, ai, ki, ri, ci〉 then B responds with H1(Mi)=hi ∈
G.

2. Otherwise, B picks a random ci ∈ {0, 1} so that Pr{ci =

0}=1/(qC + qT + 1), and also picks ai, ki, ri ∈ Z∗p at ran-
dom.
If ci = 0, then B computes hi = u2g

ai .
If ci = 1, then B computes hi = g

ai .

3. Algorithm B appends the tuple 〈Mi, hi, ai, ki, ri, ci〉 to
the H1-list and sends H1(Mi)=hi toA.

H3-queries: To respond to these queries, B maintains a list
of tuples 〈ti,Vi〉 called the H3-list. The list is initially empty.
If the query ti already appears on the H3-list thenB responds
with H3(ti)=Vi. Otherwise, B responds with H3(ti) = V by
generating V ∈ GT at random and adds the new tuple 〈ti,V〉
to the H3-list.
Ciphertext queries: WhenA issues a query for the cipher-
text of Mi, B responds as follows:

1. B responds to H1-queries by running the above algo-
rithm to obtain hi=H1(Mi). If ci=0 then B outputs ⊥
and halts. If ci=1 then hi = g

ai ∈ G. Construct hri
i , g

ri
i

and E=e(hi, u1)ri .
2. B also gets H3(E) for the query E by running the

above algorithm and gives the correct ciphertext CT=
〈hri

i , g
ri
i ,H3(E)〉 toA.

Token queries: WhenA issues a query for the token corre-
sponding to Mi, B responds as follows:

1. Similar to the ciphertext query, B gets hi=H1(Mi) for
Mi by running the above algorithm.

2. If ci=0 then B outputs ⊥ and halts. If ci=1 then
hi = g

ai ∈ G. B gives the token T K = 〈hki
i uai

1 , g
ki〉

to algorithm A. Observe that T K is correct because
hki

i uai

1 = hki
i hαi = hki+α

i .

Challenge: Algorithm A produces a pair of challenging
plaintext M0 and M1. B generates the challenge as follows:

1. Algorithm B runs the above algorithm for respond-
ing to H1-queries to obtain a h0, h1 ∈ G such that
H1(M0)=h0 and H1(M1)=h1. If both c0 = 1 for h0 and
c1 = 1 for h1 then B outputs ⊥ and halts.

2. Otherwise, at least one of c0, c1 is equal to 0. Algorithm
B picks a b ∈ {0, 1} at random such that cb = 0.

3. Algorithm B responds with the challenge ciphertext
CT=〈I, u3, J〉 for a random I ∈ G and J ∈ GT . Observe
that the challenge implicitly defines I, J as follows:

I = H1(Mb)γ,

J = H3(e(H1(Mb), uγ1)) = H3(e(u2g
ab , gαγ))

= H3(e(g, g)αγ(β+ab)).

Hence, the challenge is a valid ciphertext for Mb.
More ciphertexts, token queries: A continues to ask
for the ciphertext or the token of Mi of his choice except
M0,M1. Algorithm B responds to these queries as before.
Output: Finally, A outputs its guess b ∈ {0, 1}. Then, B
picks randomly a tuple 〈t,V〉 from the H3-list and outputs
t/e(u1, u3)ab as its guess for e(g, g)αβγ.

This completes the description of algorithm B. Now
we analyze the probability that B does not output ⊥ during
the simulation. We define two events; E1 denotes an event
that B does not output ⊥ during token or ciphertext queries,
and E2 denotes an event that B does not output ⊥ during the
challenge phase. The probability that a ciphertext or a token

SHIN and KIM: EFFICIENT AND SECURE FILE DEDUPLICATION IN CLOUD STORAGE
197

query cause B to output ⊥ is Pr{ci = 0} = 1/(qC + qT + 1).
SinceAmakes at most qC +qT of all queries the probability
that event E1 occurs is at least (1− 1/(qC + qT + 1))(qC+qT) ≥
1/e. That is, Pr{E1} ≥ 1/e. Also, B will output ⊥ in the
challenge phase if A produces M0, M1 such that c0 = c1 =

1. Since Pr{ci = 0} = 1/(qC + qT + 1) for i = 0, 1, and the
two values are independent, Pr{c0 = c1 = 1} = (1 − 1/(qC +

qT +1))2 ≤ 1−1/(qC +qT). Therefore, Pr{E2} = 1−Pr{c0 =

c1 = 1} ≥ 1/(qC + qT). These two events E1 and E2 are
independent becauseA can never issue a ciphertext or token
query for the challenge plaintext, M0 and M1. Therefore, the
probability that B does not output ⊥ during the simulation
is Pr{E1 ∧ E2} = Pr{E1}Pr{E2} ≥ 1/e(qC + qT).

Next, assuming that B does not output ⊥, we ar-
gue that during the simulation A issues a query for
H3(e(H1(Mb), uγ1)) with probability at least ε as shown in
the proof of Theorem 3.1 of [9], where Mb is the chal-
lenge plaintext. That is, the value H3(e(H1(Mb), uγ1)) =
e(gβ+ab , g)αγ will appear on some tuple in the H3-list with
probability at least ε. Algorithm B will choose the correct
tuple with probability at least 1/qH3 and therefore, it will
produce the correct answer with probability at least ε/qH3

assuming that algorithm B does not output ⊥.
Consequently, since B does not output ⊥ with proba-

bility at least 1/e(qC + qT) the probability that algorithm B
succeeds overall is at least ε′ = ε/eqH3 (qC + qT). �

Appendix B: Proof of Theorem 2

Proof . The difference between SEPE and SEPEn is that in
SEPEn scheme security parameter d, a random permutation
π and hash functions Hi

2 are additionally defined. Without
loss of generality, we can assume that the security param-
eter d is a constant and a random permutation π is fixed.
Then the difference between SEPE and SEPEn lies only in
the computation of h. In the SEPEn scheme, h is calcu-
lated as h = gs, where s = �u · �vπ = ∑

i∈D iHπ(i)2 (M), and
Hi

2 : {0, 1}∗ → Z∗p are d hash functions, while h is com-
puted as h=H1(M) in the SEPE scheme, where H1 is a hash
function H1 : {0, 1}∗ → G. In the random oracle model, all
hash functions are treated as the random oracle and the dis-
tribution of hashed values is uniform. In the SEPEn scheme,
evaluations of the random oracles Hi

2 are independent with
each other. Hence, the distribution of s is uniform in N,
which implies that the distribution of h = gs is also uniform
in G. From the view of an adversary, these two schemes are
statistically indistinguishable because in the SEPE scheme
the value of hash function H1 is also distributed uniformly
in G. Therefore, assuming SEPE scheme is semantically se-
cure against an adaptively chosen plaintext attack, SEPEn

scheme is also semantically secure against the attack. And,
by Theorem 1, SEPEn scheme is secure. �

Youngjoo Shin received the B.S. degree
in Computer Science and Engineering from Ko-
rea University, Korea in 2006 and the M.S. de-
gree in Computer Science from Korea Advanced
Institute of Science and Technology, Korea in
2008. He is currently a Ph.D. candidate at Com-
puter Science Department in Korea Advanced
Institute of Science and Technology, Korea, and
is also a researcher at The Attached Institute
of ETRI, Korea. His research interests include
cryptography, network security and cloud com-

puting security.

Kwangjo Kim received the B.S. and M.S.
degrees of Electronic Engineering in Yonsei
University, Korea, and Ph.D. of Div. of Elec-
trical and Computer Engineering in Yokohama
National University, Japan. Currently he is a
professor at Computer Science Department in
Korea Advanced Institute of Science and Tech-
nology, Korea. He served the president of Ko-
rean Institute on Information Security and Cryp-
tography (KIISC) in 2009 and Board Member of
IACR from 2000 to 2004. His research interests

include the theory of cryptography and information security and their prac-
tice.

